Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays
نویسندگان
چکیده
Benzoxazinoids represent preformed protective and allelopathic compounds. The main benzoxazinoid in maize (Zea mays L.) is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to herbivores and microbes. Protective concentrations are found predominantly in young plantlets. We made use of the genetic diversity present in the maize nested association mapping (NAM) panel to identify lines with significant benzoxazinoid concentrations at later developmental stages. At 24 d after imbibition (dai), only three lines, including Mo17, showed effective DIMBOA concentrations of 1.5mM or more; B73, by contrast, had low a DIMBOA content. Mapping studies based on Mo17 and B73 were performed to reveal mechanisms that influence the DIMBOA level in 24 dai plants. A major quantitative trait locus mapped to the Bx gene cluster located on the short arm of chromosome 4, which encodes the DIMBOA biosynthetic genes. Mo17 was distinguished from all other NAM lines by high transcriptional expression of the Bx1 gene at later developmental stages. Bx1 encodes the signature enzyme of the pathway. In Mo17×B73 hybrids at 24 dai, only the Mo17 Bx1 allele transcript was detected. A 3.9kb cis-element, termed DICE (distal cis-element), that is located in the Bx gene cluster approximately 140 kb upstream of Bx1, was required for high Bx1 transcript levels during later developmental stages in Mo17. The DICE region was a hotspot of meiotic recombination. Genetic analysis revealed that high 24 dai DIMBOA concentrations were not strictly dependent on high Bx1 transcript levels. However, constitutive expression of Bx1 in transgenics increased DIMBOA levels at 24 dai, corroborating a correlation between DIMBOA content and Bx1 transcription.
منابع مشابه
Identification and VIGS-based characterization of Bx1 ortholog in rye (Secale cereale L.)
The first step of the benzoxazinoid (BX) synthesis pathway is catalyzed by an enzyme with indole-3-glycerol phosphate lyase activity encoded by 3 genes, Bx1, TSA and Igl. A gene highly homologous to maize and wheat Bx1 has been identified in rye. The goal of the study was to analyze the gene and to experimentally verify its role in the rye BX biosynthesis pathway as a rye ortholog of the Bx1 ge...
متن کاملCloning and Expression Analysis of ZmERD3 Gene From Zea mays
Background: Stresses (such as drought, salt, viruses, and others) seriously affect plant productivity. To cope with these threats, plants express a large number of genes, including several members of ERD (early responsive to dehydration) genes to synthesize and assemble adaptive molecules. But, the function of ERD3 gene hasn’t been known so far.Objectives:</strong...
متن کاملBenzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize.
Benzoxazinoids (BXs), such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. The first step in BX biosynthesis converts indole-3-glycerol phosphate into indole. In maize (Zea mays), this reaction is catalyzed by either BENZOXAZINELESS1 (BX1) or INDOLE GLYCEROL PHOSPHATE LYASE (IGL). The Bx1 gene is under developmental control and is mainly re...
متن کاملGene Evolutionary Trajectories and GC Patterns Driven by Recombination in Zea mays
Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another intriguing GC pattern exists. Maize genes show a bimodal GC content distribution that has been attr...
متن کاملBioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars
Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 66 شماره
صفحات -
تاریخ انتشار 2015